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Abstract

The quantum mechanics underlying the operation of the laser1 are developed.
An analysis of the atom - radiation interaction is presented in three ways: First,
following Einstein’s initial proto-quantum mechanical reasoning about a gas -
radiation system, the existence of stimulated emission is demonstrated, and
key relations between transition rate coefficients are derived. Second, a semi-
classical quantum mechanical derivation of Einstein’s result is given, revealing
interesting properties of the atom - radiation interaction. Finally, the second
quantization of the atomic Hamiltonian is performed, giving a full quantum
mechanical description of atomic transitions in a quantized radiation field. The
final formulation of the system reveals the properties of stimulated emission
that allow lasing as we know it.

1 Introduction

The laser is an amazing technological achievement of quantum mechanics. It is

probably the flashiest direct macroscopic demonstration of a quantum mechanical

process. Anyone can appreciate the remarkable physical characteristics that lasers

can achieve: high emission coherence, monochromatic emission, miniscule beam di-

vergence, extremely short pulses, tunable emission frequency, etc. Lasers have found

their way into a multitude of scientific, industrial, and popular applications, including

interferometry measurement, frequency calibration, ultrashort light pulse generation,

fluorophore excitation, exertion of nano-scale force on nano-scale elements, precision

etching and cutting, and even inertial fusion ignition! The special properties of the

1laser = Light Amplification by Stimulated Emission of Radiation
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laser are a result of the peculiar physics of stimulated emission, which is a very non-

classical phenomenon. I hope to make the basic quantum mechanics of stimulated

emission (and therefore the laser) accessible at the undergraduate level of physics. My

goal here is to present the development of the quantum theory of lasing and optical

pumping, and demonstrate some of the elementary lasing applications of this theory.

This paper is loosely organized according to the historical development of the

theory of lasing, because that development is a convenient and interesting way to

present the quantum theory. The theory of the laser began with Einstein’s mostly

classical approach to atom-radiation interaction; after Schrödinger and Heisenberg, a

quantum mechanical description for Einstein’s processes became available. Eventu-

ally, with the advent of quantum electrodynamics, everything, including the radiation

field, could be fully described by quantum mechanics. Only at this last step is the

theory underlying the essential coherent amplification property of stimulated emission

available.

2 The laser

I begin by briefly presenting the basic idea behind laser technology, so that the fol-

lowing physics is presented in the context of a real system. Refer to Figure 1 for a

diagram. A simple laser consists of a cavity filled with a lasing medium and bounded

by mirrors at opposite ends. One of these mirrors is completely reflective, the other is

partially reflective. The lasing medium is chosen such that, at the energies of interest,

there are only three excitable states, named the ‘reservoir’ state, state 0, and state

1, in order of increasing energy (lasers generally have more than three levels, but the

concept is the same). Furthermore, a source of light with energy equal to E1 − Eres

is applied to the lasing medium. The result is that the population of state 1 in the

medium is artificially ‘pumped’ up above the thermal equilibrium population. The

pumped atoms may then be stimulated to relax by radiation with energy E1 − E0.

As we will discuss, an amazing property of the resulting emitted radiation (from

process 3 in Figure 1) is that it is emitted with exactly the same phase, frequency,

and direction as the stimulating radiation! With sufficient pumping, this stimulated

process will amplify in the laser cavity as the emitted radiation reflects back and

forth between the mirrors. Since one of the mirrors is only partially silvered, the laser

cavity emits a beam which is monochromatic, coherent, and directional - a laser beam

is born.
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Figure 1: The basic schematic of a laser is shown here. The callout box contains an

energy diagram of five of the most important atomic transition processes within the

laser cavity. Process 1 is spontaneous emission from 1 to 0. Process 2 is absorption

moving from 0 to 1. Process 3 is stimulated emission from 1 to 0. Process 4 is

spontaneous emission from 0 to the reservoir state. Process 5 is absorption of the

pumping radiation moving atoms from the reservoir state to 1.

3 The proto-quantum theory of lasing

In 1917, Albert Einstein published a paper in Physika Zeitschrift, a leading European

physical journal at the time, entitled ‘Zur Quantentheorie der Strahlung’, translated

as ‘On the Quantum Theory of Radiation’ [1]. At the time of publication, the quantum

mechanics of atomic spectra was yet in its infancy, and Einstein’s own paper on the

photoelectric effect had only recently provided evidence of the quantization of light.

Quantum electrodynamics was not yet on the horizon. Einstein’s paper approaches

the interaction between an atomic gas and a radiation field by dealing mainly with

the simplified situation in which the atoms in the gas have two relevant electronic

levels; i.e. only two levels with significant thermal excitation. Einstein’s goal was to

determine the dynamics of the populations of the two levels under the influence of

the atom-radiation interaction. He therefore sought to determine the transition rates

between the energy levels in the gas. The determination of those rates goes something

as follows (following Loudon [5]): Consider a gas of N atoms contained in a blackbody
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cavity. Throughout we will assume the gas is homogeneous and that the radiation

field is isotropic and homogeneous. Let the energies of the two electronic levels in the

atoms be E0 and E1 (E0 < E1), with corresponding degeneracy numbers d0 and d1.

Let the number of atoms with energy E0 be N0, and the number in the excited state

be N1. These two populations are of course governed by the conservation law

N0 +N1 = N (1)

where we will assume the system is closed, and therefore N is constant.An electronic

transition in one atom between the two levels must result in the absorption or emission

of a photon with energy Eγ = E1 − E0 = h̄ω, where ω is the angular frequency of

the absorbed or emitted radiation. I will denote the transition rate from state 0 to

state 1, or the absorption rate, as R01, and the rate from 1 to 0, or the emission rate,

as R10. It is simple to write the rate equation for the atomic level populations using

these transition rates
dN0

dt
= −dN1

dt
= R10N1 −R01N0 (2)

In general, we should assume that the transition rates may depend on the energy

density of the radiation at the transition frequency ω, denoted u(ω). Indeed, the

absorption transition can only occur via absorption of a photon of energy h̄ω; it is

reasonable to expect that the transition rate would depend on u(ω). I will therefore

decompose the rates into two sets of rate coefficients: spontaneous rate coefficients,

aij, and stimulated rate coefficients bωij such that

Rij = aij + bωiju(ω) (3)

I use the superscript ω solely to remind the reader of the differing units of the co-

efficients. It is clear from energy conservation that a01 = 0, since in the absence of

electromagnetic energy at the transition frequency (u(ω) = 0) there can be no ab-

sorption and no transition from 0 to 1. The coefficient bω10 will eventually be the most

interesting quantity in this set, as it is not intuitively obvious that the radiation field

should affect R10, the transition rate from 1 to 0. The transition process represented

by the rate coefficient bω10 is known as ‘stimulated emission’, since it represents emis-

sion that is triggered by incident radiation; perhaps the reader will not be shocked

by this development given the contents of the acronym ‘laser’.

The rate a10 is known as the ‘spontaneous emission’ rate, since it is the rate

of transition down from 1 to 0 in the absence of radiative interaction. The a and b

coefficients (commonly capitalized in literature) are known as the Einstein coefficients,
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as they were originally identified and determined in his 1917 paper. Substituting the

coefficients defined in (3) into the rate equation (2)

dN1

dt
= a10N1 + bω10u(ω)N1 − bω01u(ω)N0 (4)

where we have again set a01 = 0. If our atomic level populations are in equilibrium

the individual populations are constant

dN1

dt
= 0 = a10N1 + bω10u(ω)N1 − bω01u(ω)N0 (5)

This seemingly innocent equilibrium expression suddenly allows us to solve for the

energy density as a function of our four (three) rate coefficients and two populations

u(ω) =
a10N1

bω01N0 − bω10N1

(6)

According to Maxwell-Boltzmann statistics, the ratio of populations is

N0

N1

=
d0

d1

e
−E0
kBT

e
−E1
kBT

=
d0

d1

e
E1−E0

kBT =
d0

d1

e
h̄ω

kBT (7)

where kB is the Boltzmann constant and T is the gas temperature, and di is again the

degeneracy of the ith state. We can then rewrite (6) and substitute the Boltzmann

relation in (7):

u(ω) =
a10

bω10

1
d0bω

01

d1bω
10
e

h̄ω
kBT − 1

(8)

If the reader recalls Planck’s formula for the energy density of blackbody radiation

u(ω), (8) may look extremely suggestive. Planck’s formula is

u(ω) =
h̄ω3

π2c3
1

e
h̄ω

kBT − 1
(9)

In fact, to preserve physical consistency these two expressions must be the same for

all values of T and ω. If they are to be equal, it must be true that

a10

bω10
=
h̄ω3

π2c3
(10)

and
bω01d0

bω10d1

= 1 (11)
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We should pause for a moment and consider the extraordinary implications of these

relations. Equations (10) and (11) in no uncertain terms demand that there be a tran-

sition process which is stimulated by radiation! Otherwise bω10 would be identically

zero. Einstein discovered this process theoretically via the above reasoning without

knowledge of the mechanism behind it. We will find that mechanism later by invoking

a full quantum mechanical theory.We have derived these relations between the four

rate coefficients based on Planck’s blackbody law, Maxwell-Boltzmann statistics, and

some reasoning based on energy and mass conservation in a closed system in equi-

librium. Notice that except for a01, all the coefficients must be non-zero, and that

for the non-degenerate case (d0 = d1 = 1), bω10 = bω01. Einstein recognized that the

nature of stimulated emission evoked the idea of radiative amplification. However,

because of the latter equality, there must be a population inversion - a situation in

which N1 > N0 - for amplification to occur. That population inversion is achieved in

lasers via the pumping technique described in Section 2.

Note that the linear dependence of the rate on u(ω) was weakly motivated in (3).

However, in retrospect, based on the reasoning from (8) to (11), it is clear that a

nonzero higher order dependence of Rij on u(ω) would not allow the correspondence

with Planck’s formula. The linearity of the dependence will also be seen to arise

naturally from the quantum mechanics of transition in Section 4. It is remarkable

that we have advanced thus far into the physics of atom-radiation interaction with

only the simplest invocation of quantum theory - the quantization of the atomic

spectrum. In fact, the reader might feel, as I did, that the whole derivation was

somewhat ‘tricky’. In a way, it was a trick, albeit an extremely clever and successful

one! The calculations above depend mostly on phenomenological relations; they

are constructed to match experimental results, with little reference to an underlying

mechanism. This is because, at the time, there was no known mechanism - it was a

decade before Heisenberg and Schrödinger formulated quantum mechanics as we know

it. The really fantastic property of stimulated emission which enables laser technology

is the coherent directional property of stimulated emission radiation. The derivation

of this property requires the quantum electrodynamics which will be presented in

Section 5.
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4 The semiclassical theory of lasing

I will now derive the quantum mechanical mechanism of atomic transition using the

method of time dependent perturbation approximation. I thereby hope to confirm

Einstein’s determination of transition rates quantum mechanically, and perhaps gain

more insight into the dynamics of the system. As the section title indicates, we still

will not achieve a full quantum theory; I will employ a quantum mechanical descrip-

tion of the electronic levels, but an entirely classical one of the radiation fields.Given

a system governed by a time dependent Hamiltonian, the transition probability for

the system to begin in the state |m〉 and move to the state |n〉 at time t is given by

Pmn(t) = |cn(t)|2 (12)

where cn(t) is the complex probability amplitude of |n〉 in the atomic state |ψ(t)〉. In

this derivation, I will start by considering a general system with k basis states, since

lasing systems always involve at least three states. However, at important junctions,

I will show how the special two-state case relates to Einstein’s system.Following Grif-

fiths [2] and Sakurai [3], in Dirac notation, the Schrödinger equation gives the time

evolution of an unperturbed general state

|ψ(t)〉 =
k∑

n=0

cne
−iEnt/h̄|n〉 (13)

The numbered states |n〉 are the energy eigenstates of Ĥ0, the unperturbed Hamilto-

nian. We will consider the effect of a small perturbing Hamiltonian Ĥ1. Eventually,

we will analyze the problem for a perturbation of the form of a classical electromag-

netic wave, but for now, Ĥ1 will be general. The full Hamiltonian is the sum

Ĥ = Ĥ0 + Ĥ1 (14)

We define d
dt
Ĥ0 = 0 and d

dt
Ĥ1 6= 0. Unlike the unperturbed case, we will consider

a set of cn(t) which are not necessarily constant. This variation will account for the

perturbation of the system. The time dependent Schrödinger equation is

ih̄
d

dt
|ψ〉 = Ĥ|ψ〉 (15)

We can substitute the eigenstate expansion in (13) with perturbed coefficients cn(t)

into the Schrödinger equation from (15). Taking the inner product throughout with
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〈m|, we have

ċm =
k∑

n=0

− i

h̄
〈m|Ĥ1|n〉e−i(En−Em)t/h̄cn (16)

This becomes more concise using matrix notation and with the transition energy

expressed as En − Em = h̄ω0

ċm =
k∑

n=0

− i

h̄
H1

mne
−iω0tcn (17)

This is a very interesting result: (17) is a coupled linear differential set of equations

in k+1 variables. To solve them we will use the initial values cn(0) in the differential

equations (17) (this is the first order perturbation approximation), then integrate

the equations. That will allow us to find the transition probability between two

states Pmn(t). That integration depends on the explicit form of the perturbation

Hamiltonian Ĥ1 and the initial conditions. Therefore, we will pause to define the

circumstances of interest.

I am interested again in Einstein’s two state situation, specifically one in which

the system is in the mth eigenstate at t = 0; we therefore set cm(0) = 1 and

cn(0) = 0, n 6= m. The time-depedendent perturbation that we will apply is a classi-

cal electromagnetic wave. Considering a particular mode of the electromagnetic field,

specified by frequency ω, wave vector ~k (ω = c|~k|), and polarization ~e (~k · ~e = 0),

with electric amplitude E0. The electric field is given by

~E(ω,~k,~e, ~r) = E0 cos (ωt+ ~k · ~r + φ)~e (18)

To simplify calculations, we will assume the atom to be at ~r = 0, and the phase φ = 0:

~E(ω,~k,~e) = E0 cos (ωt)~e (19)

We will also assume that the electric field does not vary significantly on the scale of

the radius of the atom; 1

|~k|
� a0 (where a0 is the Bohr radius). This assumption is

quite reasonable for the visible region of spectrum. Furthermore, we will asume that

the dominant interaction is that between the electric dipole of the atom ~p =
∑

ei
e~r

(a sum over the electrons in the atom) and the electric field. We can therefore ignore

the magnetic component of the field, which the atom responds to much more weakly,

as well as higher order electric interactions. Following Loudon [5], the Hamiltonian

of that interaction, ĤED, is given by

ĤED = ~p · ~E (20)
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For a two state system (k = 1), the equations (17) reduce to

ċ0 = − i

h̄
H1

01e
−iω0tc1 −

i

h̄
H1

00c0

ċ1 = − i

h̄
H1

10e
iω0tc0 −

i

h̄
H1

11c1 (21)

Consider that the dipole moment operator ~p has an odd parity over r. Therefore,

since the states |n〉 are eigenstates of parity, whatever the parity of |n〉 the quantity

H1
nn must integrate to 0;this considerably simplifies our coupled equations (21) for c0

and c1

ċ0 = − i

h̄
H1

01e
−iω0tc1

ċ1 = − i

h̄
H1

10e
iω0tc0 (22)

Since the Hamiltonian Ĥ1 must be hermitian, H1
01 = (H1

10)
†, there is really only one

quantity left to calculate to fully determine the perturbation effect. It is interesting

to observe that H1
01 is nonzero only if the two states n and m have opposite parity in

r. Finally,

H1
mn = 〈m|~p · ~e|n〉E0 cos(ωt) = p~e

mnE0 cos(ωt) (23)

where p~e
mn is the component of the electric dipole between the two states in the

direction of the electric field polarization vector; it represents the strength of the

ability of the dipole interaction to couple between states m and n. Substituting into

(22),

ċ0 = − i

h̄
p~e

01E0 cos(ωt)e−iω0tc1

ċ1 = − i

h̄
p~e

10E0 cos(ωt)eiω0tc0 (24)

As anticipated, we are now faced with a coupled pair of differential equations with no

obvious method of exact solution. Following Griffiths [2], we will apply a first order

perturbation approximation by setting c0(t) = c0(0) = 1 and c1(t) = c1(0) = 0 in (24)

ċ0 ≈ 0

ċ1 ≈ − i

h̄
p~e

10E0 cos(ωt)eiω0t (25)

We could solve these equations, then go back to (24) and substitute the solutions to

obtain the second order perturbation, but we will stick with a first order analysis.
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Expanding the cosine, simplifying, and integrating,

c0(t) = 1

c1(t) = − i

2h̄
p~e

10E0

∫ t

0

dt′
(
ei(ω0+ω)t′ + ei(ω0−ω)t′

)
(26)

The integral of (26) can easily be evaluated:

c1(t) = − 1

2h̄
p~e

10E0

(
ei(ω0+ω)t − 1

ω0 + ω
+
ei(ω0−ω)t − 1

ω0 − ω

)
(27)

Essentially, the work is now finished. We have determined c1(t) which will imme-

diately yield P01. However, if we make a few approximations, the answer will be

much more intelligible and satisfying. The denominators of the two terms in (27) are

astronomically different in most circumstances we will be interested in. Visible fre-

quencies are on the order of 1015Hz. First, notice that at that frequency magnitude,

unless ω ≈ ω0, c1(t) will approximately vanish. Secondly, if the two frequencies are

indeed very close together the first denominator will be much larger than the second

denominator, such that the first term can be neglected. Therefore, in the visible (and

neighboring) regions of the transition spectrum, c1(t) is given by

c1(t) = − 1

2h̄
p~e

10E0
ei(ω0−ω)t − 1

ω0 − ω
(28)

P01(t) = (
1

h̄
p~e

10E0)
2 sin2 ((ω0 − ω)t/2)

(ω0 − ω)2
(29)

The symmetry of equations (24) makes it a simple matter to find the reverse transition

probability - it turns out they are the same [2];

P10(t) = P01(t) (30)

which supports Einstein’s relation between stimulated rate coefficients in (11). Fi-

nally, we have a mechanism for stimulated emission - the perturbation of the Hamil-

tonian has been shown to cause the probability of transition to rise above zero over

time. The curious oscillation of that probability is sometimes known as ‘Rabi flop-

ping’. Now, if we are to model the same system of Einstein, we need to calculate these

probabilities for light in thermal equilibrium with a blackbody cavity. That means the

light is polychromatic, unpolarized, and directionally isotropic. Therefore we must

average (29) over all incident directions, polarizations, and frequencies. First we will

complete the frequency average. In order to represent a blackbody electromagnetic
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wave, we must replace the arbitrary amplitude E0 with a spectrum of amplitudes

appropriate for blackbody radiation E0(ω). That can be easily accomplished by rec-

ognizing that E0 is related to the energy density in the wave by u(ω) = ε0
2
E2

0(ω),

which automatically gives us the the form for the blackbody electromagnetic wave.

〈P10(t)〉ω =

∫ ∞

−∞
dωP01(ω, t)

〈P10(t)〉ω =
2

ε0h̄
2 (p~e

10)
2

∫
dωu(ω)

sin2 ((ω0 − ω)t/2)

(ω0 − ω)2
(31)

As in the earlier discussion, the scale of ω is enormous, resulting in a very sharply

peaked function multiplying u(ω) in the integral in (31). Since u(ω), Planck’s black-

body energy density function, varies comparatively slowly, we can replace u(ω) with

u(ω0), the radiative energy density at the transition frequency.

〈P10(t)〉ω =
2

ε0h̄
2 (p~e

10)
2u(ω0)

∫
dω

sin2 ((ω0 − ω)t/2)

(ω0 − ω)2
(32)

This is actually a very important and powerful statement - this indicates that the

transition rates we are about to derive will be applicable to any radiation field with

a slowly varying energy density function; essentially, our derivation will be valid for

almost any radiation environment, including a a monochromatic beam of light with

u(ω) some characteristic gaussian centered at ω0. Continuing, the frequency average

results in

〈P10(t)〉ω =
π

ε0h̄
2 (p~e

10)
2u(ω0)t (33)

It can be shown [2, p. 354] that by averaging over all directions and polarizations of

incident waves yields an additional factor of 1/3 in the transition probability. It makes

sense that the probability would decrease, since the dipole interaction is maximized

by an alignment between the electric field and the dipole, so averaging the energy

over all directions would result in a weaker overall interaction. Finally, the transition

rate, which for a statistical ensemble is the time derivative of the probability, is given

by

bω10 = bω01 =
dP10(t)

dt
=

π

ε0h̄
2 (p~e

10)
2 (34)

Notice that this method is at a loss to explain the so-called spontaneous emission

process, because in the absence of perturbation, the eigentstates are stationary and

there are no transitions. The theory presented in the following section will not be

limited in that manner.
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5 The quantum mechanical theory of lasing

I will now present a considerably abbreviated introduction to the full quantization

of the problem of the atom-radiation interaction. I will not be as thorough here as

in other sections because a rigorous treatment of the subject spans the contents of

entire textbooks. This is the beginning of ‘quantum electrodynamics’ (QED), the

theory that describes particle interactions mediated by photons. It is a remarkable

theory with a sublimely accurate record of experimental verification. However, I will

only follow it as far as is necessary for an introduction to the quantum mechanics of

lasing.

The following development does not introduce any principles unknown to a 3rd

year physics student. However, for those who are unfamiliar to the subject, it is made

difficult by a disorienting trip from familiar electromagnetic fields to electromagnetic

potential operators and their algebra. With perseverence, the familiar harmonic oscil-

lator will emerge miraculously from the scrum. From there the well-known harmonic

oscillator algebra will allow us to represent the field as a composition of modes each

of which exist in a harmonic oscillator state.Our first aim will be to transform the

classical electromagnetic field energy into a Hamiltonian formulation, which will al-

low us to apply quantum mechanical principles to electromagnetism. That classical

quantity is

E =
1

2

∫
d3r

(
µ−1

0 | ~B|2 + ε0| ~ET |2
)

(35)

I refer forward to (43) to explain the T subscript. The process starts with one of the

most successful series of physical relations ever created - Maxwell’s equations.

∇× ~E = −∂
~B

∂t
(36)

∇ · ~E =
σ

ε0
(37)

∇× ~B =
1

c2
∂ ~E

∂t
+ µ0

~J (38)

∇ · ~B = 0 (39)

Consider the potentials ~A and φ that generate the electric and magnetic fields, defined

by

∇× ~A = ~B

−∇φ− ∂ ~A

∂t
= ~E (40)
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Following Loudon [5], substitution of (40) into Maxwell’s equations, then the choice

of the gauge defined by

∇ · ~A = 0 (41)

defines a set of equations which are essentially the potential formulation of Maxwell’s

equations. Those equations are

−∇2 ~A+
1

c2
∂

∂t
∇φ+

1

c2
∂2

∂t2
~A = µ0

~J

−∇2φ =
σ

ε0
(42)

We now proceed to find a set of field equations in which the potentials are uncoupled.

The Helmholtz theorem asserts that any vector field ~V may be separated into two

parts - one ‘longitudinal’ or ‘irrotational’, with zero curl, ~VL, and one ‘transverse’,

with zero divergence, ~VT , such that

~V = ~VL + ~VT (43)

We can decompose (42) in the same way by subsequently taking the curl and diver-

gence over the equation.

−∇2 ~AL +
1

c2
∂

∂t
(∇φ)L +

1

c2
∂2

∂t2
~AL = µ0

~JL

−∇2 ~AT +
1

c2
∂

∂t
(∇φ)T +

1

c2
∂2

∂t2
~AT = µ0

~JT (44)

From the chosen gauge (41), we know that ~AL = 0 and therefore ~AT = ~A. Also, the

identity ∇×∇f = 0 for a scalar field f indicates that (∇φ)T = 0. Now our equations

simplify and uncouple. The three uncoupled field equations are

1

c2
∂

∂t
∇φ = µ0

~JL

−∇2 ~A+
1

c2
∂2

∂t2
~A = µ0

~JT

−∇2φ =
σ

ε0
(45)

With these relationships governing the potentials, we are armed to approach the

quantization of the free electromagnetic field, defined as a region where ~JT = 0 and

σ = 0 [5]. In a free region, ~A is governed by a wave equation:

−∇2 ~A+
1

c2
∂2

∂t2
~A = 0 (46)
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If we consider an arbitrary volume of space (for simplicity, a cube of side L), we can

decompose ~A into spatial modes ~Ak,~e(t). The solution of equation (46) yields the

explicit time dependence of each mode. Therefore, the decomposition is

~A =
∑
k,~e

Ak,~e(r, t) =
∑
k,~e

~e(ak,~ee
(−iωkt+ik·r) + a∗k,~ee

(iωkt−ik·r)) (47)

where the sum is over the three discrete wavenumbers for the three dimensions, rep-

resented by k, and the two possible polarization vectors ~e, constrained by ~k · ~e = 0.

The frequency ωk is given by ωk = |~k|c. ~Ak,~e is accordingly the kth mode in the ~eth

polarization, and ak,~e and a∗k,~e represent its travelling wave vector potential compo-

nents.

Based on this classical quantity ~A, we will now define the corresponding quantum

mechanical operator Â as

Â =
∑
k,e

Âk,e =
∑
k,e

(
âk,ee

(−iωkt+ik·r) + â†k,ee
(iωkt−ik·r))

)
(48)

where k again represents the three quantized wavenumbers and e is now the polar-

ization number in whatever polarization basis is chosen.

The next step is to use this expression for the quantized potential Â to find ÊT

and B̂, the quantum mechanical field operators 2. We can then substitute the Ê and

B̂ operators into a quantum mechanical version of (35). Using the definitions in (40)

with (48), we find

ÊT =
∑
k,e

iωk~ek

(
âk,ee

(−iωkt+k·r) − â†k,ee
(iωk+k·r)

)
B̂ =

∑
k,e

iωk
~k × ~ek

(
âk,ee

(−iωkt+k·r) − â†k,ee
(iωk+k·r)

)
(49)

The quantum mechanical radiation Hamiltonian is obtained by analogy to (35), and

the field operators (49) are substituted (with substantial simplification) to yield [5]

Ĥrad =
1

2

∫
V

d3r
(
µ−1

0 B̂2 + ε0Ê
2
T

)
=

∑
k,e

h̄2

4ε0V

(
âk,eâ

†
k,e + â†k,eâk,e

)
(50)

2In the case of the free electromagnetic field, we are only interested in the transverse electric field
ÊT , which solely depends on Â via (40). The longitudinal field, which we neglect, represents the
electrostatic contribution from nonzero charge distribution σ [5, p. 132]



The Quantum Dynamics of Lasing 15

where V = L3. If we define more convenient dimensionless operators

α̂k,e =

√
h̄

2ε0ωkV
âk,e (51)

which can be shown to have the commutation relation [α̂k,e, ˆαk′,e′
†] = δk,k′δe,e′ then

rearrange (50), we have

Ĥrad =
∑
k,e

h̄ωk

(
α̂†

k,eα̂k,e +
1

2

)
=

∑
k,e

h̄ωk

(
nk,e +

1

2

)
(52)

We have found something strange and wonderful. This is the Hamiltonian for a

quantum mechanical harmonic oscillator, in fact the sum of an infinite number of

independent ones! The raising and lowering operators α̂ and α̂† are the dimensionless

version of the travelling wave vector potential operators3. Our free electromagnetic

system immediately inherits the whole battery of properties that physics undergradu-

ate students study so exhaustively. The eigenstates of the radiation field are therefore

given by an infinite set of harmonic oscillator number states

Ĥrad|{nk,e}〉 = Ĥrad

∑
k,e

|nk1,1〉|nk1,2〉|nk2,1〉|nk2,2〉 . . .

=
∑
k,e

h̄ωk

(
nk,e +

1

2

)
(53)

The number of the state of a particular mode nk,e represents the number of ‘photons’

present in that mode, or the mode’s ‘occupation number’.

We have outlined the quantization of the free electromagnetic field. However,

the system we wish to describe is the interaction of the free field with an atomic

system; thus we have only completed half the derivation (and for a rigorous treatment,

considerable less than half the work). I will now skip a large segment of intricate

formalism involving the coupling of the nucleus-electron system to the quantized

electromagnetic field. We arrive at a completed Hamiltonian formulation of the atom-

radiation system

Ĥatom−rad = Ĥ0 + Ĥcoupling =
(
Ĥatom + Ĥrad

)
+ ĤED (54)

3The intuitive explanation for this is that what we classically considered forward and backward
travelling waves, we can equivalently consider positive and negative frequency waves; the operators
representing these positive and negative frequency components therefore becomes the raising and
lowering operators for the occupation of the quantum mechanical electromagnetic modes.
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where Ĥatom is the usual atomic Hamiltonian, and ĤED is the electric-dipole Hamil-

tonian from (20). This is sometimes known as the ‘second quantization’ of the atomic

Hamiltonian [5]. We have made one important approximation - we used only the first

order term from the radiation-atom interaction Hamiltonian, which is ĤED. Consider

a basis of states which are a combination of the radiation field states from (53) and

the atomic states, labeled with integers for convenience:

|Ψ〉 = |{nk,e}〉|natom〉 = |{nk,e}, natom〉 (55)

This basis is subject to the orthonormality relation 〈nk,e, natom|nk′,e′ , n
′
atom〉 = δk,k′δe,e′δn,n′ .

Note that this basis is an eigenstate basis of Ĥ0 = Ĥatom+Ĥrad from (54); the coupling

Hamiltonian ĤED is responsible for the dynamics of the system.

If we restrict our basis to two atomic states, |0〉 and |1〉 as in previous sections,

then we can define atomic raising and lowering operators β̂† = |1〉〈0| and β̂ = |0〉〈1|.
Thus,

β̂|{nk,e}, 1〉 = |{nk,e}, 0〉
β̂†|{nk,e}, 0〉 = |{nk,e}, 1〉 (56)

It can be shown that the electric dipole Hamiltonian in this restricted basis is given

by

ĤED =
∑
k,e

iEk,e,01

(
β̂†α̂k,ee

(ik·r) − β̂α̂†
k,ee

(−ik·r)
)

(57)

where Ek,e,01 is a quantity dependent on the radiation mode and p01, with units of

energy. It is now straighforward to determine that in the basis (55),

ĤED =
∑
k,e

(γk,e,01|nk,e − 1, 1〉〈nk,e, 0|+ γk,e,10|nk,e + 1, 0〉〈nk,e, 1|) (58)

where several presently distracting quantities have been hastily concealed in the γk,e,ij.

Conservation of energy must be invoked as a selection rule, allowing only those tran-

sitions where the energy gained or lost from the radiation field equals the energy lost

or gained by the atom.

We have now arrived at our last goal. According to (58), a system described

by the state |nk,e, 1〉 may transition via the dipole coupling to the state |nk,e + 1, 0〉
(provided that h̄ωk = E1 − E0 and no other selection rules are violated). This is

stimulated emission! Pay very close attention to the fact that the mode which is

populated by an extra photon after the transition is in the same mode as the one
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which stimulated the transition. Thus, stimulated emission results in the emission

of a photon with the same frequency, direction, and polarization as the stimulating

photon. This is the cause of coherent amplification in a laser. Einstein’s mysterious

spontaneous emission process is described here too - it is represented by the term

ĤED−spontaneous = γk,e,10|1, 0〉〈0, 1| (59)

This transition is one from the ground state of one of the radiation modes to its

first excited state. Thus, even in the ‘vacuum state’ of the radiation field in which

there are no photons present, the radiation field can still stimulate transitions via the

electric dipole interaction! In the semiclassical picture, the vacuum electromagnetic

field has nonzero energy, and nonzero field amplitude. This fascinating phenomenon,

which gives rise to the Casimir effect, is sometimes described as ‘vacuum fluctuations’

of the field, however it is an inherently quantum mechanical property of the radiation

- atom system.

The QED derivation of the absorption and emission rates are unfortunately a bit

out of reach at the level of the formulism in this paper, but we are not far from finding

those rates; the use of Fermi’s golden rule is the main remaining operation required,

and the results prove to be consistent with (10), (11), and (34) [5, p. 170].

6 Conclusions

It is my hope that this paper has given the reader a deeper understanding of the

basic quantum mechanics of the atom-radiation system, as well as an appreciation

for the remarkable diversity of analytical approaches to describing that system. From

Einstein’s pre-Schrödinger phenomenological approach we obtained the existence of

stimulated emission, and several relations between transition rates, but gained lit-

tle insight into the mechanisms. From semi-classical perturbation theory and the

quantum theory of the atom, we determined an exact expression for the stimulated

absorption and emission rates and identified a clear mechanism for those transitions,

but spontaneous emission eluded us, hinting that the mechanism is incomplete or

incorrect.

Finally, the second quantization of the atom provided a theory capable of encom-

passing all the observed phenomena. Spontaneous emission was found to be simply

an electric dipole transition with initial radiation occupation number of 0, and the co-

herent directional properties of stimulated emission became evident. It is unusual and
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very satisfying in undergraduate quantum mechanics to find such a dramatic macro-

scopic quantum phenomenon that is within one’s theoretical reach. As entrancing

and amusing as a bright laser beam has always been, it is only more amazing with a

sense of the physics of its creation.
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